Identification of the binding sites for ubiquinone and inhibitors in the Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae by photoaffinity labeling.
نویسندگان
چکیده
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is the first enzyme of the respiratory chain and the main ion transporter in many marine and pathogenic bacteria, including Vibrio cholerae The V. cholerae Na+-NQR has been extensively studied, but its binding sites for ubiquinone and inhibitors remain controversial. Here, using a photoreactive ubiquinone PUQ-3 as well as two aurachin-type inhibitors [125I]PAD-1 and [125I]PAD-2 and photoaffinity labeling experiments on the isolated enzyme, we demonstrate that the ubiquinone ring binds to the NqrA subunit in the regions Leu-32-Met-39 and Phe-131-Lys-138, encompassing the rear wall of a predicted ubiquinone-binding cavity. The quinolone ring and alkyl side chain of aurachin bound to the NqrB subunit in the regions Arg-43-Lys-54 and Trp-23-Gly-89, respectively. These results indicate that the binding sites for ubiquinone and aurachin-type inhibitors are in close proximity but do not overlap one another. Unexpectedly, although the inhibitory effects of PAD-1 and PAD-2 were almost completely abolished by certain mutations in NqrB (i.e. G140A and E144C), the binding reactivities of [125I]PAD-1 and [125I]PAD-2 to the mutated enzymes were unchanged compared with those of the wild-type enzyme. We also found that photoaffinity labeling by [125I]PAD-1 and [125I]PAD-2, rather than being competitively suppressed in the presence of other inhibitors, is enhanced under some experimental conditions. To explain these apparently paradoxical results, we propose models for the catalytic reaction of Na+-NQR and its interactions with inhibitors on the basis of the biochemical and biophysical results reported here and in previous work.
منابع مشابه
The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH and donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of glyci...
متن کاملLocalization of ubiquinone-8 in the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and...
متن کاملNMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:Quinone oxidoreductase from Vibrio cholerae.
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na(+)-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter pr...
متن کاملLocalization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae.
The sodium ion-translocating NADH:quinone oxidoreductase (Na(+)-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na(+) across the bacterial membrane. The Na(+)-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD an...
متن کاملRoles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance
The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 292 19 شماره
صفحات -
تاریخ انتشار 2017